Donnerstag, 26. April 2012

Neutraler Expertenkreis stellte "Risikostudie Fracking" vor

Der Neutrale Expertenkreis im InfoDialog Fracking stellte im Rahmen der Abschlusskonferenz des InfoDialog Fracking am Mittwoch, den 25. April, in Osnabrück seine „Risikostudie Fracking“ und seine Empfehlungen zur Fracking-Technologie im Bereich der unkonventionellen Erdgaslagerstätten vor. Damit legt er das Ergebnis einer einjährigen wissenschaftlichen Überprüfung der Fracking-Technologie vor. Ein Team von insgesamt 38 Wissenschaftlern hat sich in dieser Zeit umfassend mit denkbaren Gefahren des Frackens in den für Deutschland neuartigen unkonventionellen Schiefergas und Kohleflözgas-Lagerstätten befasst.

Die wissenschaftliche Leitung hatte Prof. Dr. Dietrich Borchardt, Leiter der Abteilung Aquatische Ökosystemanalyse am Helmholtz-Zentrum für Umweltforschung (UFZ). „Eine Studie dieser Breite gibt es bisher nicht. Das haben uns auch die internationalen Gutachter bescheinigt“, sagte Dietrich Borchardt vom UFZ auf der Pressekonferenz über den Prozess, der auch in den USA mit Interesse verfolgt wird.

Die wesentlichen Aussagen des Expertenkreises in Kürze sowie einen Überblick über die Empfehlungen (Auszug) finden Sie in der Pressemitteilung des InfoDialog Fracking:
http://dialog-erdgasundfrac.de/presseinformation-25april-2012

Die Übersichtsfassung der Risikostudie Fracking finden Sie ebenfalls auf den Webseiten des InfoDialog Fracking:
http://dialog-erdgasundfrac.de/risikostudie-fracking

Der InfoDialog Fracking – Informations- und Dialogprozess von ExxonMobil zur Sicherheit und Umweltverträglichkeit der Fracking-Technologie für die Erdgasgewinnung – hat im Zeitraum April 2011 bis April 2012 ein Forum für die neutrale wissenschaftliche Prüfung des Frackings in unkonventionellen Erdgasvorkommen und für die öffentliche Diskussion der Expertenergebnisse bereitgestellt. Die Arbeit der Experten wurde durch den Arbeitskreis der gesell¬schaftlichen Akteure begleitet, in dem 47 Organisationen mitgewirkt und Vertreter von Fachbehörden als Beobachter sowie Bürgerinitiativen und Interessierte teilgenommen haben.
Die Verantwortung für das Konzept und die Durchführung des Informations- und Dialogprozesses lag bei den selbständigen Prozessbegleitern Ruth Hammerbacher (Osnabrück) und Dr. Christoph Ewen (Darmstadt).
http://dialog-erdgasundfrac.de/

Weitere Informationen:
zum wissenschaftlichen Inhalt der „Risikostudie Fracking“ des Neutralen Expertenkreis:
Prof. Dietrich Borchardt
Helmholtz-Zentrum für Umweltforschung - UFZ
Telefon: 0391-810-9757
http://www.ufz.de/index.php?de=15581

zum Informations- und Dialogprozess (InfoDialog Fracking):
Ruth Hammerbacher
Telefon: 0541-33882-0
http://www.hammerbacher.de/index.php?f=1&path=team/ruth-hammerbacher

oder über
Tilo Arnhold (UFZ-Pressestelle)
Telefon: 0341-235-1635
http://www.ufz.de/index.php?de=640 

Tilo Arnhold 
Presse- und Öffentlichkeitsarbeit
Helmholtz-Zentrum für Umweltforschung - UFZ
via Informationsdienst Wissenschaft

Mittwoch, 25. April 2012

Schnelle Tsunami-Warnung mittels GPS

GPS zur schnellen und genauen Abschätzung von Tsunamigefahr - Fukushima: nach drei Minuten präzise Abschätzung

Bei küstennahen Erdbeben, die Tsunamis erzeugen können, ist die Vorwarnzeit für die Küstenabschnitte sehr kurz. Mithilfe der hochpräzisen Auswertung von GPS-Daten (GPS Precise Point Positioning) konnten Wissenschaftler des Deutschen GeoForschungsZentrums GFZ bei der Untersuchung des Fukushima-Bebens vom 11.März 2011 zeigen, dass im Prinzip bereits nach etwas über drei Minuten die Bebenstärke sowie die räumliche Verteilung bestimmt werden können, was eine rasche und detaillierte Tsunami-Frühwarnung ermöglicht.
Ein Vorteil eines GPS-Messnetzes in der Nähe des Bebenherdes liegt in der Verfügbarkeit von Messdaten bereits kurz nach Bebenbeginn. Noch während die Erde bebt, kann die horizontale und vertikale Verschiebung der tektonischen Platten erfasst werden. Zusammen mit den nach und nach einlaufenden seismischen Daten ergibt sich so ein Bild des Bruchvorganges noch während er stattfindet. Dieses Ergebnis stellte der GFZ-Wissenschaftler Dr. Andrey Babeyko auf der diesjährigen Versammlung der EGU (European Geoscientific Union) in Wien vor. „Wir haben anlässlich des Fukushima-Bebens über 500 GPS-Stationen ausgewertet und gezeigt, dass bereits drei bis vier Minuten nach Beginn des Erdbebens eine korrekte Abschätzung der Magnitude von M=9,0 und des Tsunami möglich gewesen wäre,“ sagte Dr. Babeyko. Der Ablauf besteht aus mehreren Schritten: Zuerst werden die GPS-Rohdaten mit Hilfe hochpräziser Satellitenbahndaten ausgewertet. Die resultierenden Verschiebungen werden mittels eines mathematischen Verfahrens invertiert, um ein räumliches Erdbebenmodell zu erzeugen. Hiermit kann wiederum die Verformung des Meeresbodens berechnet werden, die als Quelle des Tsunamis verwendet wird, um im letzten Schritt, der Berechnung der Tsunami-Ausbreitung, die Warnstufen für die Küstenabschnitte zu bestimmen.
Dieser GPS-Schutzschild wurde zunächst für das Tsunami-Frühwarnsystem GITEWS entwickelt, das die Helmholtz-Gemeinschaft unter Federführung des GFZ im Auftrag der deutschen Bundesregierung für Indonesien erstellte. „Mit der Anwendung auf die Datensätze des Katastrophenbebens vom 11. März 2011 zeigt sich erneut das Potential, das ein GPS-Schild in Tsunami-Frühwarnsystemen besitzt,“ so Babeyko. „Ein GPS-Schutzschild könnte ein sinnvolles Werkzeug für alle Regionen mit Erdbeben-/Tsunami-Gefährdung sein.“
Hinzu kommt ein weiterer Faktor: eine vollständige Erdbebenauswertung dauert ihre Zeit, die man im Fall von Tsunamigefahr nicht hat. Daher tendieren traditionelle seismologische Methoden zu einer Unterschätzung der Momentenmagnitude bei sehr starken Beben. GPS-Messungen der horizontalen und vertikalen Verschiebung können diesen Effekt korrigieren.

Dipl.Met. Franz Ossing 
Presse- und Öffentlichkeitsarbeit
Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

via Informationsdienst Wissenschaft

IfL-Karte zeigt Borreliose-Risiko im deutschlandweiten Vergleich

Leipzig/Bonn. – In Deutschland erkranken in jedem Jahr etwa 100.000 Menschen an der durch Zeckenstiche übertragenen Lyme-Borreliose. Am größten ist das Infektionsrisiko in Brandenburg, Sachsen und Bayern. In den Ballungsräumen an Rhein und Ruhr tritt die Krankheit deutlich seltener auf. Das zeigt eine jetzt vom Leibniz-Institut für Länderkunde veröffentlichte Karte auf der Grundlage von Daten der Kassenärztlichen Bundesvereinigung.

Die Lyme-Borreliose, benannt nach einem Ort im US-Bundesstaat Connecticut, kann zu chronischen Entzündungen des Nervensystems, des Herzmuskels und der Gelenke führen. Die Krankheit verläuft nur sehr selten tödlich, verursacht aber hohe Kosten für das Gesundheitssystem. Allein im dritten Jahresquartal der Jahre 2007 bis 2009 wurden im Schnitt gut 300.000 Behandlungsfälle abgerechnet. Die Zahl der jährlichen kassenärztlichen Abrechnungsfälle in Deutschland liegt inzwischen bei einer Million. Das ergaben aktuelle Auswertungen des Umweltmediziners und Geographen Prof. Dr. Thomas Kistemann vom Institut für Hygiene und Öffentliche Gesundheit der Universität Bonn. Die Ergebnisse seiner Studie sind jetzt auf „Nationalatlas aktuell“ (http://aktuell.nationalatlas.de) nachzulesen. Die vom Leibniz-Institut für Länderkunde erstellte Karte verdeutlicht die regional unterschiedliche Verbreitung der Erkrankung in Deutschland.

Danach nimmt ihre Häufigkeit von Norden nach Süden zu, gleichzeitig zeichnet sich ein deutliches Ost-West-Gefälle ab. Die höchsten Behandlungsraten finden sich in Brandenburg, Sachsen und Bayern entlang der Grenzen zu Polen und Tschechien. Hier weist die Statistik teilweise über tausend abgerechnete Behandlungen je 100.000 Einwohner im dritten Jahresquartal aus. Wesentlich niedriger ist die Zahl der Erkrankungen dagegen in den Großstädten: Die Wahrscheinlichkeit einer Infektion mit Borellien, einem spiralförmigen Bakterium, ist hier etwa um den Faktor zehn geringer. Der Grund: Zecken halten sich bevorzugt im Übergangsbereich zwischen Wald und Wiese auf, einem Lebensraum, der sich in den letzten Jahrzehnten durch die fortschreitende Zersiedelung der Landschaft, aber auch durch Brachen und Sturmschäden deutlich ausgeweitet hat.

Kistemann rechnet wie die meisten Experten mit einer Zunahme der Infektionen mit Lyme-Borreliose und steigenden Kosten für das Gesundheitssystem in den nächsten zehn Jahren. Klimaveränderungen gelten als eine der Ursachen für die Ausbreitung der Krankheit. So begünstigen beispielsweise milde Winter die Dichte und Aktivität der Zeckenpopulation.

Dr. Peter Wittmann 
Presse- und Öffentlichkeitsarbeit
Leibniz-Institut für Länderkunde
 via Informationsdienst Wissenschaft

 

Donnerstag, 19. April 2012

Kleine Organismen mindern große Belastung

Forscher der Universität Jena entwickeln Sanierungsstrategie für kontaminierte Bergbauregionen
 
Waren es früher Gold, Silber oder Eisenerz, sind es heute Kupfer, Aluminium und vor allem die Seltenen Erden: Metallische Rohstoffe sind für die Industriegesellschaften der westlichen Welt unentbehrlich. Seit Jahrhunderten werden Lagerstätten erschlossen und Erze abgebaut. Doch wovon die Industrie profitiert, ist für die Natur oft ein Desaster: Sind die Minen ausgebeutet, bleiben nicht nur zerstörte Landschaften zurück. „Der Boden und das Grundwasser sind oft schwer belastet“, sagt Prof. Dr. Erika Kothe von der Friedrich-Schiller-Universität Jena.

Wie sich die Regenerierungsfähigkeit der Natur an solch verwundeten Orten in verschiedenen Klimazonen Europas wieder zum Leben erwecken lässt, dafür hat der interdisziplinäre Forschungsverbund „UMBRELLA“ jetzt Handlungsempfehlungen vorgelegt. Die Hauptrolle darin spielen Mikroorganismen. „UMBRELLA“, das von der Europäischen Union geförderte Projekt, steht für Using MicroBes for the REgulation of heavy metaL mobiLity at ecosystem and landscape scAle – also die Regulierung der Schwermetallbelastung durch Mikroben.

„Es gibt viele Bakterien, die Schwermetalle wie Cadmium, Nickel oder Kupfer aufnehmen und speichern können“, erläutert Prof. Kothe. „Siedelt man auf den kontaminierten Halden die richtigen Mikroben an, so entziehen diese dem Boden die Schwermetalle“, sagt die Professorin für Mikrobielle Kommunikation, die „UMBRELLA“ koordiniert hat. Daneben können geeignete Pflanzen die Sanierungsprozesse unterstützen, da sie Schwermetalle gezielt aufnehmen. Sind die Pflanzen unbelastet, können sie als Energiepflanzen verwendet werden, während sie mit den giftigen Stoffen verbrannt und deponiert werden können.

Im Rahmen von „UMBRELLA“ haben in den vergangenen drei Jahren Wissenschaftler aus acht europäischen Ländern Konzepte entwickelt, die zeigen, wie für unterschiedliche Regionen mit spezifischen Kontaminationen jeweils ein optimales Konsortium aus Mikroben und Pflanzen zusammengestellt werden kann. Diese hat das „UMBRELLA“-Team an sechs verschiedenen Bergbau-Standorten in ganz Europa getestet, darunter in Rumänien, Schweden, auf Sardinien und in der Wismutregion, dem ehemaligen Uranerzbergbaugebiet in Ostthüringen und Sachsen.

Ein universelles Sanierungskonzept, so das Ergebnis von „UMBRELLA“, gibt es allerdings nicht. Denn so unterschiedlich die Metallbelastung an den einzelnen Standorten ist, so unterschiedlich sind auch die Mikroben, die sich dort wohlfühlen. Und das nicht nur hinsichtlich ihres Metall-Appetits, sondern auch im Zusammenleben mit anderen Organismen oder im Austausch mit der unbelebten Umgebung. „Um einen Standort effizient zu sanieren, muss er daher zunächst umfassend charakterisiert werden“, sagt Prof. Kothe. Welche Mikroorganismen leben vor Ort und welche davon sind gegen Schwermetalle resistent? Welche Pflanzen wachsen und welche Mykorrhizapilze können die Schwermetallaufnahme in die Pflanzen unterstützen? Neben Mikrobiologen gehörten auch Geowissenschaftler zum Jenaer Team von „UMBRELLA“. Sie haben u. a. Erkenntnisse über die Verteilungswege der Metalle im Boden und im Wasser beigesteuert, die für die Sanierung ebenfalls entscheidend sind.

Von „UMBRELLA“, davon ist Prof. Kothe überzeugt, werde langfristig nicht nur die Natur in ehemaligen Bergbauregionen profitieren können. „Dank der guten Kooperation in unserem Verbund bot sich vor allem motivierten Nachwuchsforschern die Chance, sich bei den internationalen Partnern weiterzuqualifizieren“, so die Prorektorin für den wissenschaftlichen Nachwuchs und Gleichstellung der Universität Jena. Viele Doktoranden der beteiligten Forschergruppen haben im Rahmen von „UMBRELLA“ die Möglichkeit genutzt, für einige Monate im Ausland zu forschen.

Weitere Informationen zu „UMBRELLA“ sind zu finden unter: www.umbrella.uni-jena.de.

Ute Schönfelder 
Stabsstelle Kommunikation/Pressestelle
Friedrich-Schiller-Universität Jena

via Informationsdienst Wissenschaft

Tiefe Geothermie – Ein Leistungsträger in Bayern

Hydrogeologisch-geothermische Modellrechnungen blicken 50 Jahre voraus und sprechen den oberbayerischen Anlagen zur Nutzung der Tiefen Geothermie stabile Förderbedingungen zu. Dieses und weitere Prognose-Ergebnisse legt das Leibniz-Institut für Angewandte Geophysik, Hannover (LIAG) zum Abschluss des Projekts „Geothermische Charakterisierung von karstig-klüftigen Aquiferen im Großraum München“ vor, in dessen Rahmen auch ein Simulator zur numerischen Prognose-Modellierung für verschiedene Geothermie-Förderszenarien entwickelt wurde.

Der Rahmen
Die Tiefe Geothermie ist eine erneuerbare Energie. Gegenüber den anderen Erneuerbaren, die letztlich alle von der Sonne partizipieren, hat sie außerhalb der großen Vulkangebiete noch einiges Entwicklungspotenzial, sowohl in der wissenschaftlichen Erforschung wie in der technischen Umsetzung. In Süddeutschland aber erweist sich die Tiefe Geothermie schon jetzt als Energie-Leistungsträger. Günstige geologische Verhältnisse im Untergrund des Alpenvorlands sorgen für geothermischen “Auftrieb“. Entsprechend fördert auch das BMU seit einigen Jahren Arbeiten in dieser Region, darunter auch diese Forschungsvorhaben des LIAG.

Geologie und Hydraulik
Der Kalk- und Dolomitstein der Höhenzüge und Steilanstiege der Schwäbischen Alb bilden die Formation (Malm), die nach Süden in Richtung Alpen einige tausend Meter tief abtaucht und dort von mächtigen Schichten der Alpenvorlandsedimente (Molasse) überdeckt ist. Karsthöhlen, Klüfte, Spalten und Poren dieser Malm-Formation sind mit riesigen Mengen Wasser gefüllt, welches mit zunehmender Tiefe warm, sogar heiß wird. Die Donauversickerung und der Blautopf auf der Schwäbischen Alb vermögen dem Laien eine Vorstellung zu vermitteln, welche Wassermengen dieser Malm schon in einem kleinen Gebiet bequem schluckt oder ableiten kann. Fachleute sagen schlicht, der Malm ist ein guter Wasserleiter, ein guter Aquifer. Aus geothermischer Sicht ist im Alpenvorland alles vorhanden, was zu einem guten Geothermie-Reservoir gehört. Es gibt einen Aquifer, also eine wasserreiche, gut durchlässige Schicht. Sie liegt an vielen Stellen tief genug, wodurch das Wasser darin heiß ist, vielerorts weit über 100 °C. Von allen Seiten kann reichlich heißes Wasser nachströmen, nach oben ist es durch ein dichtes Schichtpaket geschützt. Der Malm-Aquifer unter dem süddeutschen Molassebecken ist das bedeutendste hydrogeothermische Reservoir in Mitteleuropa, sowohl für die Wärmebereitstellung wie für die Stromerzeugung.

Die Erdwärme-Produktion
Um die Erdwärme zu gewinnen, werden meist zwei Bohrungen bis in den Malm niedergebracht, im Malm haben sie Abstände von 1 bis 3 km. Die eine fördert das heiße Wasser, die andere bringt das abgekühlte Wasser zurück in den Untergrund. Inzwischen gibt es allein dreizehn solcher Bohrungspaare, sogenannte „Dubletten“ im Großraum München. Diese Zahl verdeutlicht das große, wirtschaftlich nutzbare geothermische Potenzial.

Die spannenden Fragen
Wie lange funktioniert das – hier heiß fördern, dort kalt zurückfüllen? Wo genau sind die Reservoire? Wo fließt wie viel Wasser? Wie viel kann, wie viel darf man nachhaltig fördern? Nicht nur diese, sondern etliche weitere Fragen brauchen eine Antwort. Messdaten und Computermodelle sind der Schlüssel zu möglichen Antworten.

Das Projekt
Die gegenseitige Beeinflussung geothermischer Dubletten und die Erforschung des Zusammenhangs seismischer und hydraulischer Parameter standen im Mittelpunkt des Projekts „Geothermische Charakterisierung von karstig-klüftigen Aquiferen im Großraum München“.
Das Projekt war als Verbundvorhaben mit dem Bayerischen Landesamt für Umwelt und den Partnern aus Hochschulen (FU Berlin, LMU München) und Wirtschaft (Geothermie Neubrandenburg, Aquasoil, HydroConsult) konzipiert. Es wurde vom LIAG koordiniert und endete am 31.12.2011; die Ergebnisse werden am 23. April auf der EGU-Tagung in Wien der Fachwelt vorgestellt (EGU2012-9157).

Im Jahr 2009 war der Untergrund von Unterhaching mit Seismik dreidimensional durchleuchtet worden. Dieser große Messdaten-Schatz bildet zusammen mit den vorhandenen großräumigen geologischen und geothermischen Daten sowie den daraus entwickelten räumlichen Untergrundmodellen die Grundlage für eine numerische Prognosemodellierung, wie sie zur Beantwortung der vielen Fragen erforderlich ist. In diesem Rechenmodell können verschiedene Förderszenarien simuliert und dargestellt werden und so mit realen Pump- und Förderdaten in Beziehung gebracht werden. Das Rechenmodell wurde so kalibriert, dass es die hydraulischen und geothermischen Verhältnisse sowie die durchgeführten Pumpversuche im Modellgebiet reproduzieren kann.

Die Ergebnisse
Die Simulationen ergaben für die langfristige Geothermie-Nutzung sehr ermutigende Ergebnisse. Sie zeigen, dass in den nächsten fünfzig Jahren nur im Nahbereich der jeweiligen Bohrungen die Temperaturen im Untergrund durch Reinjektion, also durch das Wiedereinfüllen von Kaltwasser, nennenswert beeinflusst werden. Gegenseitigen Temperaturbeeinflussungen der Bohrungen untereinander werden nicht auftreten. Auch die hydraulischen Beeinflussungen werden weit unterhalb der durch den jeweils eigenen Betrieb induzierten Veränderung liegen. Die Änderungen sind wegen der ausgeglichenen Massenbilanz mit wenigen Ausnahmen von untergeordneter Bedeutung und liegen häufig unter der Nachweisgrenze. Größere Beeinflussungen sind in erster Linie dem geringen räumlichen Abstand der Injektionsbohrungen, den hohen Volumenströmen sowie geringdurchlässigen Bereichen geschuldet.
Mit dem neuen Simulator können zukünftige Planungen durch Hinzufügen weiterer Förder- und Injektionsbohrungen sowie Änderungen der Pumpraten betrachtet und bewertet werden. Das numerische Modell kann als Werkzeug zur Bewertung des nachhaltigen Betriebes der bestehenden oder geplanten geothermischen Anlagen im Malm-Reservoir dienen.

Das Institut:
Das Leibniz-Institut für Angewandte Geophysik mit Sitz in Hannover, kurz LIAG, ist ein eigenständiges Forschungsinstitut. Es ist Mitglied der Leibniz-Gemeinschaft und wird als Einrichtung von überregionaler Bedeutung von Bund und Ländern gemeinsam finanziert. Seine Mitarbeiterinnen und Mitarbeiter haben die Aufgabe, Strukturen, Zustände und Prozesse im anthropogen beeinflussbaren Untergrund zu untersuchen sowie zur Lösung dieser Fragestellungen neue Gerätesysteme, Messmethoden und Interpretationsverfahren zu entwickeln. Auf der Hannover Messe vom 23.-27.4.12 präsentiert sich Institut zum Thema Geothermie in Halle 27 Stand E50.

Franz Binot 
Öffentlichkeitsarbeit
Leibniz-Institut für Angewandte Geophysik

via Informationsdienst Wissenschaft

Dienstag, 10. April 2012

Titanic - was passierte beim Sinken

Ursachenforschung zum Erdrutsch in Nachterstedt

Forscher des Leibniz-Instituts für Gewässerökologie und Binnenfischerei (IGB) ermitteln derzeit, wo Grundwasser in den Concordia-See strömt. Die Ergebnisse könnten einen Baustein zur Erklärung des verheerenden Erdrutsches von 2009 liefern.

 Am 18. Juli 2009 rutschte eine Uferkante in den Concordia-See in Sachsen-Anhalt. Im Morgengrauen riss sie ein Doppelhaus, eine Straße und Teile eines Einfamilienhauses mit in den Abgrund, drei Menschen kamen ums Leben. Seitdem untersucht die Lausitzer und Mitteldeutsche Bergbau-Verwaltungsgesellschaft (LMBV), wie es zu dem Unglück kommen konnte.

Der Zustrom von Grundwasser in das Seewasser erfolgt über riesige Areale des Seebodens und unterscheidet sich häufig auf kleinstem Raum. Das macht die Messungen auf dem schwer zugänglichen Grund schwierig. Daher verwenden die IGB-Forscher einen Trick: Das Seewasser hat derzeit eine Temperatur von etwa fünf Grad Celsius, auch am Seeboden. Die Temperatur des Grundwassers beträgt dagegen ganzjährig etwa zehn Grad Celsius. An Stellen, an denen Grundwasser zutritt, ist daher die Temperatur leicht erhöht, und zwar umso stärker je mehr Grundwasser zuströmt. Dr. Jörg Lewandowski vom IGB erklärt: „Wenn wir die Temperaturverteilung im See kennen, können wir Rückschlüsse auf den Zustrom von Grundwasser ziehen.“

Um die Temperaturverteilung des Seebodens flächendeckend zu bestimmen, haben die Wissenschaftler die faseroptische Temperaturmessung verwendet. Dabei wurde ein mehrere Kilometer langes Messkabel auf dem Seeboden verlegt und für jeden Meter des Kabels die Temperatur gemessen. IGB-Wissenschaftlerin Franziska Pöschke berichtet: „Das tägliche Verlegen und Einholen des zwei Kilometer langen Kabels war echte Knochenarbeit. Ohne die Unterstützung durch das Technische Hilfswerk mit Booten und Mitarbeitern hätten wir das nicht schaffen können.“ Ihre Kollegin Andrea Sacher ergänzt: „Wir hatten sehr starken Wind, es war schwierig, den Kurs zu halten und das schwere Kabel präzise zu verlegen. Es lief dennoch alles gut, nun werten wir die umfangreichen Messungen aus. Die Ergebnisse werden in einigen Monaten vorliegen.“

Bei der Methode der faseroptischen Temperaturmessung (engl. distributed temperature sensing, DTS) wird ein kurzer Laserpuls in eine Glasfaser geschickt. Ein kleiner Teil des Laserpulses wird zurückgestreut und gemessen. Die Rückstreuung ist stark temperaturabhängig, so dass aus der Intensität der Rückstreuung und der Laufzeit des Laserpulses für jeden Meter des Kabels die Temperatur ermittelt werden kann. DTS ist eine etablierte Technik, die vielfältig eingesetzt wird, zum Beispiel zur Branderkennung in Tunneln, zur Temperaturüberwachung von großchemischen Prozessen, zur thermischen Überwachung von Energiekabeln und Freileitungen sowie zur Leckage-Detektion an Pipelines, Staumauern und Deichen. Auch bei wissenschaftlichen Fragestellungen wird DTS zunehmend eingesetzt. Beispielsweise wird der Rückgang von Permafrost im Gebirge mit DTS-Kabeln untersucht.

Dagegen ist die Erfassung des Zustroms von Grundwasser zu Seen ein neues, noch in der Entwicklung befindliches Anwendungsgebiet, das in Europa maßgeblich durch das IGB vorangetrieben wird.

Gesine Wiemer 
Pressestelle des Forschungsverbundes Berlin e.V.
Forschungsverbund Berlin e.V.

via Informationsdienst Wissenschaft

Dienstag, 3. April 2012

Spurensicherung am Erdbeben-Tatort -Expedition zum Ursprung des Tohoku-Beben mit GEOMAR Beteiligung

Ein Jahr nach dem Mega-Beben vor der Küste Japans startet jetzt eine internationale Expedition, um die Spuren der Erdbewegungen im Meeresboden zu sichern. Mit dabei ist auch Professor Jan Behrmann vom GEOMAR | Helmholtz-Zentrum für Ozeanforschung Kiel.

Vor einem Jahr bebte vor der Küste Japans die Erde. Ein gewaltiger Tsunami überrollte die Westküste der Insel Honshu, tötete mindestens 15.000 Menschen und löste die nukleare Katastrophe von Fukushima aus. Gleichzeitig erschütterte das Beben auch einige Grundannahmen der Geowissenschaften. Sie hatten ein Megabeben wie das vom 11. März 2011 viel weiter im Süden Honshus erwartet. „Die betroffene Region Tohoku war bekannt für häufige Erdstöße, die aber nur leicht bis mittelschwer ausfielen“, erklärt Professor Jan Behrmann vom GEOMAR | Helmholtz-Zentrum für Ozeanforschung Kiel. Um zu untersuchen, was an den bisherigen Annahmen falsch war und um eine bessere Risikoabschätzung für die Zukunft zu ermöglichen, startet jetzt das Bohrschiff japanische CHIKYU mit einer internationalen Wissenschaftler-Crew zu einer Expedition in die Ursprungsregion des Bebens. Professor Behrmann aus Kiel ist einer von zwei deutschen Teilnehmern.

Die CHIKYU ist das größte und modernste Bohrschiff der Welt. Es wird vor allem für das internationale Forschungsprogramm IODP (Integrated Ocean Drilling Program) eingesetzt. Ziel des Programms ist es, durch den Ozeanboden tief in den Erdkruste zu bohren, unter anderem, um mehr über die tektonischen Prozesse dort zu erfahren. Forschungsfahrten mit der CHIKYU benötigen normalerweise mindestens zwei Jahre Planungsvorlauf. „Dass schon ein Jahr nach dem Beben eine Expedition zu dessen Ursprung starten kann, ist außergewöhnlich“, sagt Jan Behrmann, „aber allen Beteiligten war wichtig, die Spuren zu sichern, so lange sie noch frisch sind.“ Nicht umsonst trage die Expedition den Namen „Japan Trench Fast Drilling Project“.

Mit ihr haben die Wissenschaftler jetzt eine der seltenen Gelegenheiten, die unmittelbaren Folgen eines Erdbebens direkt zu beproben. Die beim Beben freigesetzte Energie hat nicht nur den gewaltigen Tsunami ausgelöst und eine Deformation der Erdkruste verursacht, ein Teil der Energie ist in Form von Wärme im Gestein geblieben. „Wenn wir dieses vor einem Jahr erhitzte Gestein jetzt erbohren, haben wir eine Chance, die Reibungsmechanismen zu verstehen, die dort wirken und fundamentale Aussagen über die Energiefreisetzung bei großen Erdbeben zu machen“, erklärt Behrmann.

Am 1. April ist die CHIKYU aus dem Hafen von Shimizu südlich von Tokio ausgelaufen. Im Zielgebiet seewärts der nordjapanischen Hafenstadt Sendai angekommen, müssen die Techniker an Bord das Bohrgestänge zunächst durch 7000 Meter Wasser ablassen, bevor die eigentliche Bohrarbeit beginnen kann. Dabei wird technisches Neuland wird betreten, denn dieser Wassertiefe ist noch niemals eine Bohrung in den Ozeanboden unternommen worden. Wenn alles gut läuft, wird der Bohrer dann rund 1000 Meter in den Meeresboden vordringen. „Wir wollen unter anderem die Frage beantworten, in wieweit das Mega-Beben vor einem Jahr die Spannung zwischen den Erdplatten abgebaut oder ob es vielleicht sogar neue Spannungen hervorgerufen hat“, sagt Professor Behrmann.

Am 24. Mai soll die CHIKYU planmäßig wieder in Shimizu einlaufen. Dann beginnt die spannende Auswertung der gesammelten Daten und die Arbeit an den Bohrkernen. „Wir hoffen, mit den gewonnenen Daten einen weiteren Mosaikstein zum Verständnis schwerer Erdbeben zu erlagen. Bis zu einer Vorhersage solcher Ereignisse ist es aber noch ein sehr weiter Weg“, resümiert Professor Behrmann.

Dr. Andreas Villwock 
Kommunikation und Medien
GEOMAR | Helmholtz-Zentrum für Ozeanforschung Kiel

via Informationsdienst Wissenschaft

Glasschwamm als lebendes Klimaarchiv

11.000 Jahre alter Tiefseeschwamm gibt Rückschlüsse auf frühere Umweltänderungen im Meer. 

Klimaforscher haben ein neues Archiv historischer Meerestemperaturen erschlossen. Anhand des Skeletts eines Schwamms, der zur Art Monorhaphis chuni gehört und 11.000 Jahre im Ostchinesischen Meer lebte, fand ein internationales Forscherteam um Wissenschaftler des Max-Planck-Instituts für Chemie heraus, dass sich die Temperatur in der Tiefsee in den letzten Jahrtausenden mehrmals veränderte. Wie Isotopen- und Elementanalysen ergaben, stieg die Meerwassertemperatur in der Umgebung des Schwamms mindestens einmal von knapp zwei Grad Celsius auf sechs bis zehn Grad Celsius an. Diese Temperaturveränderungen waren bisher nicht bekannt und sind auf Ausbrüche von Meeresvulkanen zurückzuführen.

In der Tiefsee wimmelt es von unbekannten Lebewesen, dass aber eines so lange lebt, dass man an einem Exemplar über mehrere Tausend Jahre Klimaveränderungen verfolgen kann, ist neu. Forscher des Max-Planck-Instituts für Chemie in Mainz ermittelten jetzt das Alter eines mehr als zwei Meter langen und ein Zentimeter dicken Glasschwamms auf etwa 11.000 Jahre. Er zählt somit zu den langlebigsten Lebewesen, die zurzeit existieren. Aus dem Skelett des Tieres lasen die Forscher zudem ab, wie sich während seines Lebens seine Umgebung und das Klima veränderten.

Das Team, dem neben Forschern des Max-Planck-Instituts für Chemie Wissenschaftler aus China und der Schweiz angehörten, bestimmte das Alter dieser Schwammnadel mit dem lateinischen Namen Monorhaphis chuni anhand der Isotopen- und Elementzusammensetzung des Skeletts. Es besteht aus Siliziumdioxid und erinnert an einen Glasfaserstab, der aus Hunderten feiner Lamellen aufgebaut ist, die wie die Jahresringe eines Baums ringförmig von innen nach außen gewachsen sind. Gefunden wurde das Skelett des Schwamms bereits 1986 in einer Tiefe von etwa 1.100 Metern im Ostchinesischen Meer. Hier kommen die bizarren Tiere, die mit einer Spitze im Meeresboden festwachsen, noch heute vor.

„Uns fielen unter dem Elektronenmikroskop zunächst vier Bereiche auf, in denen die Lamellen unregelmäßig wuchsen“, sagt Klaus Peter Jochum, Erstautor der jetzt erschienenen Studie. „Sie deuten auf Zeiten hin, in denen die Wassertemperatur beispielsweise durch den Ausbruch submariner Vulkane anstieg“, ergänzt der Mainzer Biogeochemiker, der über die Schwammexperten Werner E. G. Müller und Xiaohong Wang des Instituts für Physiologische Chemie der Universitätsmedizin Mainz zu dem faszinierenden Forschungsobjekt kam. Auf Zeiten hydrothermaler Aktivität im Meer deuten auch Manganspuren im Skelett hin, da sich die Mangankonzentration im Wasser nach dem Ausbruch eines Vulkans deutlich erhöht.

Außerdem untersuchten die Forscher die Lamellen mit Hilfe verschiedener Massenspektrometer auf Spurenelemente und Sauerstoffisotope. Das Verhältnis von Magnesium zu Kalzium sowie die Verteilung der Sauerstoffisotope ermöglichen es, Rückschlüsse auf die Wassertemperatur der Zeitspanne zu ziehen, zu der der Schwamm die Elemente in sein Skelett einlagerte. Ab einer Tiefe von 1.000 Metern herrschen im Meer weltweit recht einheitliche Temperaturen. Die Temperatur in der Umgebung des Glasschwamms erlaubt also Rückschlüsse sowohl auf die globale als auch auf die lokale Temperatur der Tiefsee.

Wie die Analyse der äußersten Siliziumdioxid-Schicht des Glasschwamms ergab, betrug diese bei dessen Geburt 1,9 Grad Celsius. Wie Meeresforscher aus anderen Quellen wissen, war dies die weltweite Temperatur in der Tiefsee vor rund 11.000 Jahren. Die chemischen Untersuchungen zeigen weiter, dass die Wassertemperatur, in der der Schwamm wuchs, in den ersten tausend Jahren annähernd konstant blieb. Dann stieg sie plötzlich von etwa zwei Grad Celsius auf sechs bis zehn Grad Celsius an und sank anschließend wieder auf die heutige Meerwassertemperatur von vier Grad ab. Zwischenzeitlich kam es zu weiteren Temperaturschwankungen, was auch an dem unregelmäßigen Wachstum der Lamellenringe erkennbar ist.

Die lokalen Temperaturschwankungen in dem Ostchinesischen Meer, die die Forscher aus dem Glasschwamm ermittelten, waren bisher nicht bekannt. Der Glasschwamm ermöglicht also Einblicke in bislang unbekannte Klimaveränderungen. Um noch genauere Aussagen über das Tiefseeklima der Vergangenheit zu erhalten, wollen die Forscher die Schwammnadel und weitere Glasschwämme nun auf Siliziumisotope untersuchen. So tragen sie dazu bei, Klimaforschern eine genauere Datengrundlage für Modellrechnungen zu historischen und aktuellen Klimaveränderungen zu verschaffen.

Originalpublikation:
Siliceous deep-sea sponge Monorhaphis chuni: A potential paleoclimate archive in ancient animals. Klaus Peter Jochum, Xiaohong Wang, Torsten W. Vennemann, Bärbel Sinha und Werner E. G. Müller - Chemical Geology 300-301, Pages 143–151 (2012)

Dr. Wolfgang Huisl 
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Chemie

via Informationsdienst Wissenschaft

Glass sponge as a living climate archive

An 11,000 year-old deep-sea sponge provides a record of past environmental changes in the sea.
 
Climate scientists have discovered a new archive of historical sea temperatures. With the help of the skeleton of a sponge that belongs to the Monorhaphis chuni species and that lived for 11,000 years in the East China Sea an international team around scientists from the Max Planck Institute for Chemistry could show that the deep ocean temperature changed several times over the past millennia. As isotopic and elemental analyses showed, the sea water temperature in the vicinity of the sponge increased at least once from less than two degrees Celsius to six to ten degrees Celsius. These temperature changes were not previously known and are due to eruptions of seamounts.

The deep sea is full of unknown creatures, but it is new to find one with which one can trace back thousand years of climate changes. Researchers at the Max Planck Institute for Chemistry in Mainz have now determined the age of a more than two meters long and one centimeter thick glass sponge to be about 11,000 years. It is among the longest living animal species that exist today. From this animal`s skeleton the researchers can also read how its environment and the climate changed during its life.

The team that included amongst researchers from the Max Planck Institute for Chemistry in Mainz, researchers from China, and Switzerland, determined the age of the sponge needle, with the Latin name Monorhaphis chuni, based on the isotopic and elemental composition of its skeleton. It consists of silicon dioxide and is reminiscent of a glass fiber rod, made up of hundreds of fine lamellae which have grown annually like the rings of a tree from the inside outwards. The skeleton of the sponge was already found in 1986 at a depth of approximately 1,100 meters in the East China Sea. Here, these bizarre animals, that attach with one end to the seabed, live even today.

"Initially we recognized four areas under the electron microscope where the lamellae grew irregularly," says Klaus Peter Jochum, lead author of the now -published study. "They indicate time periods of increasing water temperature, for example due to the eruption of a seamount," adds the Mainz biogeochemist who was introduced to the fascinating research object through the sponge experts Werner E. G. Müller and Xiaohong Wang from the Institute of Physiological Chemistry of the University Medical Center Mainz. Manganese traces in the skeleton indicate periods of hydrothermal activity in the sea, as the manganese concentration in the water increases after the eruption of a seamount.

In addition, the researchers investigated the lamellae for trace elements and oxygen isotopes with the help of various mass spectrometers. The ratio of magnesium to calcium and the distribution of oxygen isotopes allow conclusions about the water temperature during the period in which the sponge incorporated these chemical elements into its skeleton. At a depth of 1000 meters and more the sea temperatures are rather uniform worldwide. The temperature in the vicinity of the glass sponge thus permits conclusions about both the global and the local temperature of the deep sea.

Analyses showed that the outer silica layer of the glass sponge had a temperature of 1.9 degrees Celsius at the time of its birth. As marine scientists know from other sources, this was the temperature in the deep sea 11,000 years ago. The chemical analyses also showed that the water temperature in the first thousand years of the sponge´s life remained almost constant. It then suddenly increased from about two degrees Celsius to six to ten degrees Celsius, and afterwards decreased again to today's sea water temperature of four degrees Celsius. Meanwhile there were further temperature changes, which are also evident through the irregular growth of the lamellae.

The local temperature fluctuations in the East China Sea, which the researchers determined with the help of the glass sponge, were not previously known. The glass sponge thus allows insights into previously unknown climate change. In order to obtain more precise information about the deep sea´s past climate, the researchers want to investigate the sponge needle and other glass sponges for silicon isotopes. They thus help to give climate researchers a more accurate data base for modeling of historical and current climate change.

Original publication:
Siliceous deep-sea sponge Monorhaphis chuni: A potential paleoclimate archive in ancient animals
Klaus Peter Jochum, Xiaohong Wang, Torsten W. Vennemann, Bärbel Sinha and Werner E. G. Müller
Chemical Geology 300-301, Pages 143–151 (2012)

Dr. Wolfgang Huisl 
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Chemie
via Informationsdienst Wissenschaft
Research Blogging Awards 2010 Winner!
 
Creative Commons License
Amphibol Weblog von Gunnar Ries steht unter einer Creative Commons Namensnennung-Keine kommerzielle Nutzung-Weitergabe unter gleichen Bedingungen 3.0 Unported Lizenz.