Donnerstag, 30. Juni 2016

Plattentektonik ohne Ruckeln

     AWI-Forscher zeichnen erstmals detailliert Erdbeben an ultralangsamen mittelozeanischen Rücken auf



Die Erdbebenverteilung an ultralangsamen mittelozeanischen Rücken unterscheidet sich grundlegend von der anderer Spreizungszonen. Bis in 15 Kilometer Tiefe zirkulierendes Wasser führt hier zur Bildung eines Gesteins, welches wie Schmierseife wirkt. So driften die Kontinentalplatten an ultralangsamen mittelozeanischen Rücken ohne zu ruckeln, während dieser Vorgang in anderen Regionen zu vielen kleinen Erdbeben führt. Das berichten Geophysiker vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) am Mittwoch, 29. Juni 2016 vorab online in der Fachzeitschrift Nature.

Wo Kontinentalplatten aufeinandertreffen, türmen sich Gebirge wie der Himalaja auf. Genauso spektakulär, aber in den Tiefen der Ozeane verborgen, sind die Gebiete, wo die Kontinente auseinanderdriften: die mittelozeanischen Rücken. Am Meeresgrund wird wie am Förderband neuer Ozeanboden (Ozeanlithosphäre) gebildet, indem Magma aus größeren Tiefen nach oben strömt und die entstehende Lücke zwischen den Lithosphärenplatten füllt. Bei diesem Spreizungsprozess ruckelt es und kleine Erdbeben entstehen „am laufenden Band“. Diese Erdbeben verraten viel über die Entstehung und Struktur neuer Ozeanlithosphäre. Bei sogenannten ultralangsamen Rücken driften die Lithosphärenplatten so langsam auseinander, dass das Förderband ruckelt und stottert und temperaturbedingt nicht genug Schmelze da ist, um die Lücke zwischen den Platten zu füllen. So wird der Erdmantel an vielen Stellen direkt an den Meeresboden gefördert, ohne dass Erdkruste entsteht. An anderen Stellen entlang dieser Rücken findet man wiederum riesige Vulkane.


Ultralangsame Rücken befinden sich unter dem Meereis der Arktis und südlich von Afrika am Südwestindischen Rücken in den berüchtigten Seegebieten der „Roaring Fourties“ und „Furious Fifties“. Weil diese Seegebiete so schwierig zu erreichen sind, hat noch niemand Erdbeben vor Ort gemessen. So war bis heute über Struktur und Entstehung von gut 20 Prozent des globalen Meeresbodens wenig bekannt.


Mit dem Forschungsschiff Polarstern als zuverlässigem Arbeitstier auch in schwerer See haben es Wissenschaftler um Dr. Vera Schlindwein vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) nun erstmals gewagt, ein Netzwerk von Ozeanbodenseismometern (OBS) am Südwestindischen Rücken in den „Furious Fifties“ auszubringen und nach einem Jahr vor Ort wieder zu bergen. Ein zweites Netzwerk stand zeitgleich an einem Vulkan in gemäßigteren Breiten des Südwestindischen Rückens. „Belohnt wurden unsere Mühe und unser Risiko nun mit einem einmaligen Erdbebendatensatz, der zum ersten Mal tiefe Einblicke in die Funktionsweise der Ozeanbodenbildung bei sehr langsamen Spreizungsraten gibt“, berichtet AWI-Geophysikerin Vera Schlindwein.
Ihre Ergebnisse stellen die bisherigen wissenschaftlichen Erkenntnisse zur Funktionsweise ultralangsamer mittelozeanischer Rücken auf den Kopf: Schlindwein und ihr Doktorand Florian Schmid fanden heraus, dass Wasser bis in 15 Kilometern Tiefe der jungen Ozeanlithosphäre - also der Erdkruste und des äußeren Teils des Erdmantels - zirkuliert. Kommt dieses Wasser mit Erdmantelgestein in Kontakt, so bildet sich ein grünliches Gestein namens Serpentinit. Schon geringe Mengen von zehn Prozent Serpentinit in Erdmantelgesteinen reichen aus, damit sich das Gestein ohne jegliche Erdbeben wie auf Schmierseifenbahnen bewegen kann. Solche aseismischen Gebiete, scharf begrenzt von vielen kleinen Erdbeben, entdeckten die Forscher in ihren Daten.

Bisher glaubte man, dass Serpentinit sich nur in der Nähe von Störungszonen und nahe der Oberfläche bildet. „Unsere Daten legen nun nahe, dass Wasser durch ausgedehnte Bereiche der jungen Ozeanlithosphäre zirkuliert und dabei im Gestein gebunden wird. Wärme und z.B. Methan werden freigesetzt und zwar in Dimensionen, die man vorher nicht abgesehen hat“, sagt Vera Schlindwein.

Mit den Ozeanbodenseismometern konnten die AWI-Geophysiker die aktiven Spreizungsprozesse nun direkt beobachten - und zwar vergleichend an vulkanischen und nicht vulkanischen Rückenabschnitten. „Wir können anhand der Verteilung der Erdbeben zum ersten Mal bei der Entstehung neuer Lithosphäre bei ganz langsamen Spreizungsraten quasi zusehen. Einen solchen Datensatz hat es von den ultralangsamen Rücken noch überhaupt nicht gegeben“, berichtet Vera Schlindwein.


„Uns hat es anfangs sehr überrascht, dass Erdbeben in den Gebieten ohne Erdkruste bis in 15 Kilometer Tiefe völlig fehlten, obwohl OBS direkt darüber standen. In größeren Tiefen sowie in vulkanischen Gebieten nebenan hingegen, wo Basalt am Meeresboden zu finden ist und eine dünne Erdkruste existiert, bebte es munter in allen Tiefenbereichen“, beschreibt Vera Schlindwein den ersten Blick in die Daten, nachdem sie mit der Polarstern die OBS im Jahr 2014 wieder geborgen hatte.


Die Ergebnisse beeinflussen auch andere Disziplinen der Meeresforschung: Geologen denken über andere Deformationsmechanismen der jungen Ozeanlithosphäre nach. Denn Gestein, das sich wie Schmierseife verhält, erlaubt ganz andere Deformation, die vielleicht Grundlage des sogenannten „smooth seafloor“ sein könnte, der nur von ultralangsamen Rücken bekannt ist. Ozeanographen interessieren sich für Wärmeeintrag und Spurengase in der Wassersäule in solchen Gebieten, die bisher für nicht vulkanisch und „kalt“ gehalten wurden. Für Biologen ist der in weiten Bereichen zu erwartende erhöhte Ausstrom von Methan und Sulfiden am Meeresboden von Interesse, der eine wichtige Lebensgrundlage für Tiefseeorganismen bildet.

Originalpublikation:
Vera Schlindwein, Florian Schmid: Mid-ocean ridge seismicity reveals extreme types of ocean lithosphere. DOI: 10.1038/nature18277


Ralf Röchert Kommunikation und Medien
Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

Kommentar veröffentlichen
Research Blogging Awards 2010 Winner!
 
Creative Commons License
Amphibol Weblog von Gunnar Ries steht unter einer Creative Commons Namensnennung-Keine kommerzielle Nutzung-Weitergabe unter gleichen Bedingungen 3.0 Unported Lizenz.