Mittwoch, 23. August 2017

Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

     In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?
In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das Metall. Aber in einer speziellen Probe aus geschichtetem Cer, Rhodium und Indium (CeRhIn5) entscheiden sich alle Elektronen plötzlich für eine gemeinsame Vorzugsrichtung in einem 30 Tesla starken Magnetfeld. Dieser neue Zustand wird „Elektronische Nematizität“ genannt und ähnelt in seinen Eigenschaften den Flüssigkristallen.

„Es ist ein wenig wie in alten Zeiten“, erläutert der Autor dieser Arbeit und Leiter der Gruppe für Mikrostrukturierte Quanten Materie, Philip Moll. „Früher hat man Landkarten in beliebigen Richtungen gezeichnet, wie es einem gerade lieb war. Dieser Phasenübergang in hohen Magnetfeldern ist vergleichbar mit dem Moment, als alle Kartenmacher sich darauf einigten, den Norden als Orientierungsanker für ihre Karten zu nehmen. Dafür gibt es keinen speziellen Grund, man hätte sich genauso gut für Westen entscheiden können.“ In ähnlicher Weise entscheiden sich Elektronen in CeRhIn5 in hohen Magnetfeldern, sich plötzlich einfach in eine Richtung zu bewegen.

Wissenschaftler glauben, dass die elektronische Nematizität eng verwandt ist mit der Supraleitung, ein weiterer korrelierter Zustand, bei dem sich Elektronen zu Paaren zusammenschließen, sogenannten „Cooper-Paaren“, und dadurch ohne Widerstand elektrischen Strom leiten können. Die hier untersuchte chemische Verbindung ist ein Supraleiter, wenn sie hohen Drücken ausgesetzt ist und zeigt nematische Ordnung in hohen Magnetfeldern. Somit gibt sie Forschern die einzigartige Möglichkeit, Zusammenhänge zwischen den beiden Phänomenen in ein und demselben Material zu untersuchen.

„Diese fundamentale Frage zu Materialien mit stark wechselwirkenden Elektronen war die Ausgangslage für meine Doktorarbeit: Müssen sich die Elektronen entscheiden, ob sie sich zur Supraleitung paaren oder ob sie alle in eine Richtung gehen wollen?“ fügt Maja Bachmann, die Doktorandin die mikrostrukturierte nematische Materialen untersucht, hinzu. „Sind Supraleitung und Nematizität konkurrierende Phänomene oder könnte die gleiche Wechselwirkung, welche Supraleitung ermöglicht, auch für Nematizität verantwortlich sein?“

In der Gruppe um Philip Moll werden aus Einkristallen mit einem hochpräzisen, fokussierten Ionenstrahl mikroskopisch kleine 3D Strukturen erzeugt, welche Experimente auf Mikrochip-Ebene schrumpfen können. Mit diesen Mikrolabors reisen die Wissenschaftler als Teil einer andauernden wissenschaftlichen Zusammenarbeit zu Großforschungseinrichtungen wie die des National High Magnetic Field Laboratory in Tallahassee (Florida, USA) sowie dem Los Alamos National Lab (New Mexiko, USA), um die weltweit höchsten, zerstörungsfrei erzeugten Magnetfelder für ihre wissenschaftlichen Untersuchungen zu nutzen.

Das Max-Planck-Institut für Chemische Physik fester Stoffe (MPI CPfS) in Dresden forscht mit dem Ziel, neue Materialien mit ungewöhnlichen Eigenschaften zu entdecken und zu verstehen.
Chemiker und Physiker, Synthetiker, Experimentatoren und Theoretiker untersuchen gemeinsam, wie sich die chemische Zusammensetzung, die Anordnung der Atome sowie äußere Kräfte auf die magnetischen, elektronischen und chemischen Eigenschaften der Verbindungen auswirken. Dazu wenden sie die modernsten Instrumente und Methoden an.
Neue Quantenmaterialien, -effekte und Materialien für Energieumwandlung sind das Ergebnis dieser interdisziplinären Zusammenarbeit.
Das MPI CPfS ist Teil der Max-Planck-Gesellschaft und wurde 1995 in Dresden gegründet. Es beschäftigt rund 280 Mitarbeiterinnen und Mitarbeiter, davon etwa 180 Wissenschaftlerinnen und Wissenschaftler inklusive 70 Promovierende.

Weitere Informationen:
http://www.nature.com/nature/journal/v548/n7667/full/nature23315.htmlhttp://www.cpfs.mpg.dehttp://www.miquamat.de

Dipl.-Übers. Ingrid Rothe Presse- und ÖffentlichkeitsarbeitMax-Planck-Institut für Chemische Physik fester Stoffe



Kommentar veröffentlichen
Research Blogging Awards 2010 Winner!
 
Creative Commons License
Amphibol Weblog von Gunnar Ries steht unter einer Creative Commons Namensnennung-Keine kommerzielle Nutzung-Weitergabe unter gleichen Bedingungen 3.0 Unported Lizenz.